Topology Tools for Explainable and Green Artificial Intelligence

Rocio Gonzalez-Diaz rogodi@us.es

Sixth EACA International School on Computer Algebra and its Applications SANTIAGO DE COMPOSTELA, JULY 18-21, 2023

- Context: Green and Explainable artificial intelligence (REXASI-PRO)
- Computational topology tools: Persistent homology, barcodes, distance bottleneck, simplicial maps, Persistence modules, morphisms between persistence modules
- Partial matchings between barcodes
- Simplicial maps neural networks

- (abstract) Simplicial complexes
- Homology
- Vertex map, simplicial map
- Simplicial Approximation Theorem
- Category SpCpx : simplicial complexes, simplicial maps
- Filtration
- Persistent homology
- Persistence module

$$H_{1}(K_{1}) \longrightarrow H_{1}(K_{2}) \longrightarrow H_{1}(K_{3}) \longrightarrow H_{1}(K_{4}) \longrightarrow H_{1}(K_{5})$$

$$H_{1}(K) \longrightarrow V_{1} \xrightarrow{\rho_{1}^{2}} V_{2} \xrightarrow{\rho_{2}^{3}} V_{3} \xrightarrow{\rho_{4}^{4}} V_{4} \xrightarrow{\rho_{4}^{5}} V_{5} \longrightarrow 0$$
persistence module

- (abstract) Simplicial complexes
- Homology
- Vertex map, simplicial map
- Simplicial Approximation Theorem
- Category SpCpx : simplicial complexes, simplicial maps
- Filtration
- Persistent homology
- Persistence module

A persistence module can be seen as a functor from {1, ..., n} to the category of vector spaces

This definition can be extended to any other totally ordered set

 (V_t, ρ_p^q)

- $\rho_q^l \rho_p^q = \rho_p^l$ if $0 \le p \le q \le l \le n+1$
- ρ_p^p is the identity map

- (abstract) Simplicial complexes
- Homology
- Vertex map, simplicial map
- Simplicial Approximation Theorem
- Category SpCpx : simplicial complexes, simplicial maps
- Filtration
- Persistent homology
- Persistence module

The category of persistence modules satisfies that

- The **direct sum** of persistence modules is a persistence module
- The intersection of persistence modules is a persistence module
- The **quotient** of persistence modules is a persistence module
- The notion of **submodule** is well defined

- (abstract) Simplicial complexes
- Homology
- Vertex map, simplicial map
- Simplicial Approximation Theorem
- Category SpCpx : simplicial complexes, simplicial maps
- Filtration
- Persistent homology
- Persistence module

Example: $B = \{([1,4], 1), ([2,3], 2), ([3,4], 1)\}$ $Rep B = \langle [1,4], [2,3], [2,3], [3,4] \rangle$ $SS = \{[1,4], [2,3], [3,4]\}$

 $V_{It}^+ := \operatorname{Im}_{at}^+(V) \cap \operatorname{Ker}_{bt}^+(V)$ $V_{It}^- := \operatorname{Im}_{at}^-(V) \cap \operatorname{Ker}_{bt}^+(V) + \operatorname{Im}_{at}^+(V) \cap \operatorname{Ker}_{bt}^-(V)$

- (abstract) Simplicial complexes
- Homology
- Vertex map, simplicial map
- Simplicial Approximation Theorem
- Category SpCpx : simplicial complexes, simplicial maps
- Filtration
- Persistent homology
- Persistence module
- Morphism between persistence modules

- Example:
- Let \mathbb{X} and \mathbb{Y} be two finite subsets from \mathbb{R}^n such that $\mathbb{X} \subseteq \mathbb{Y}$.
- This induces an embedding $VR(\mathbb{X}) \hookrightarrow VR(\mathbb{Y})$.
- In turn, this induces a persistence morphism $f: V \to U$, where $V = PH_n(VR(X))$ and $U = PH_n(VR(Y))$

Topology Tools for Explainable and Green Artificial Intelligence

Rocio Gonzalez-Diaz rogodi@us.es

- Context: Green and Explainable artificial intelligence (REXASI-PRO)
- Computational topology tools: Persistent homology, barcodes, distance bottleneck, simplicial maps, Persistence modules, morphisms between persistence modules
- Partial matchings between barcodes
- Simplicial maps neural networks

Joint work with Manuel Soriano-Trigueros and Álvaro Torras-Casas

Manuel Soriano-Trigueros

PhD student msoriano4@us.es

Álvaro Torras Casas Research Associate (Cardiff University) atorras@us.es

A motivation

Stats is not enough:

Datasaurus dozen dataset

A motivation

A

0

2

Bottleneck distance is not enough:

<u>A motivation</u>

When can we say that a subset Y of a given a dataset X "samples" the same continuous space than X?

Why is it important?

- Data hungry
- Energy saving
- Storage saving
- Data is expensive

11

Given $B(V) = \{(I, m_I)\}$ and $B(U) = \{(J, m_J)\}$, we define a **partial matching** satisfying **block function**

$$S_V = \{I\} \qquad S_U = \{J\}$$

$$\mathcal{M}: S_V \times S_U \longrightarrow \mathbb{Z}_{\geq 0}$$

The number of arrows leaving from an interval is smaller than its multiplicity

The number of arrows arriving to an interval is smaller than its multiplicity

Block function:

$$\mathcal{M} : S_V \times S_U \to \mathbb{Z}_{\geq 0} \qquad \sum_{J \in S_U} \mathcal{M} \ (I, J) \leq m_J$$

Example:

 $\mathsf{B}(\mathsf{V}) = \{([2,4],1), ([1,5],2)\} \text{ and } \mathsf{B}(\mathsf{U}) = \{([2,3],1), ([1,4],2)\}$

 ${\rm Consider}\ {\cal M} \quad \text{is zero except for} \quad$

$$\mathcal{M}([2,4],[1,4]) = 1 \text{ and } \mathcal{M}([1,5],[1,4]) = 2.$$

 $\ensuremath{\mathcal{M}}$ is a block function, since

$$\mathcal{M}([2,4],[1,4]) = 1 \le m_{[2,4]} \text{ and } \mathcal{M}([1,5],[1,4]) = 2 \le m_{[1,5]}$$

 \mathcal{M} is not a partial matching

$$\mathcal{M}([2,4],[1,4]) + \mathcal{M}([1,5],[1,4]) = 3 \leq n_{[1,4]} = 2$$
.

The induced block function: $\mathcal{M}_f: S_V \times S_U \to \mathbb{Z}_{\geq 0}$ $\sum_{J \in S_U} \mathcal{M}_f(I, J) \leq m_I$

$$V \xrightarrow{f} U$$

$$(I, m_I) \xrightarrow{} (J, m_J)$$

$$M_f(I; J)$$

The induced block function:
$$\mathcal{M}_{f}: S_{V} \times S_{U} \to \mathbb{Z}_{\geq 0}$$
 $\sum_{J \in S_{U}} \mathcal{M}_{f}(I, J) \leq m_{I}$
 $V \xrightarrow{f} U$
 $\downarrow (I, m_{I}) \xrightarrow{f} (J, m_{J}) \downarrow$
 $V \xrightarrow{f} (J, m_{J}) \downarrow$
 $M_{f}(I, J) = \dim X_{IJt}$
 $M_{f}(I, J) = \dim X_{IJt}$
 $I \in I \cap J$
 $X_{IJt} = \frac{fV_{It}^{+} \cap U_{Jt}^{+}}{fV_{It}^{-} \cap U_{Jt}^{+} + V_{It}^{+} \cap U_{Jt}^{-}}$

The induced block function:
$$\mathcal{M}_f: S_V \times S_U \to \mathbb{Z}_{\geq 0}$$
 $\sum_{J \in S_U} \mathcal{M}_f(I, J) \leq m_I$
Let $I = [a, b]$ and $J = [c, d]$. $\mathcal{M}_f(I, J) = \dim X_{IJd}$ if $J \leq I$
 $\mathcal{M}_f(I, J) = 0$ otherwise Otherwise determines of the set of

We say that $J \leq I$ if $c \leq a \leq d \leq b$.

$$X_{IJt} = \frac{fV_{It}^{+} \cap U_{Jt}^{+}}{fV_{It}^{-} \cap U_{Jt}^{+} + V_{It}^{+} \cap U_{Jt}^{-}}$$

The induced block function:
$$\mathcal{M}_f: S_V \times S_U \to \mathbb{Z}_{\geq 0}$$
 $\sum_{J \in S_U} \mathcal{M}_f(I, J) \leq m_I$
 $\mathcal{M}_f(I, J) = \dim X_{IJd} \text{ if } J \leq I$
 $\mathcal{M}_f(I, J) = 0$ otherwise Detween Persistence Modules. Computational Geometry, 112, 101985 (2023)
• [a, b] and [c, d] are nested if $a < c < d < b$

Prop.: If for any set of intervals $S \subseteq S_V$ we have that

$$\sum_{I \in S} \mathcal{M}_f(I, J) > n_J,$$

then there exists a pair of nested intervals in S_V .

Corollary: If there are no two nested intervals in S_V then M_f is a partial matching.

Linearity of the induced block function:

Given a direct sum of morphisms of persistence modules

$$f^1 \oplus f^2 : V^1 \oplus V^2 \to U^1 \oplus U^2$$

we have that

$$\mathcal{M}_{f^{1} \oplus f^{2}}(I, J) = \mathcal{M}_{f^{1}}(I, J) + \mathcal{M}_{f^{2}}(I, J)$$
Example:

$$U \qquad k \xrightarrow{\mathrm{Id}} k \longrightarrow 0$$

$$f \uparrow \simeq \uparrow (\begin{pmatrix} 0 \\ 1 \end{pmatrix} \uparrow) \uparrow \qquad \uparrow$$

$$V \qquad 0 \longrightarrow k^{2} \xrightarrow{\begin{pmatrix} 1 \\ 0 \end{pmatrix}} k$$

$$\mathcal{M}_{f} ?$$

Partial Matchings Induced by Morphisms between Persistence Modules. Computational Geometry, 112, 101985 (2023)

Endpoint order: $[a_1, b_1] \leq [a_2, b_2]$ iff $b_1 < b_2$ or $b_1 = b_2$ and $a_1 \leq a_2$

Endpoint order: $[a_1, b_1] \leq [a_2, b_2]$ iff $b_1 < b_2$ or $b_1 = b_2$ and $a_1 \leq a_2$

Example:

- Sort both $Rep B(S_1)$ and Rep B(T) by the endpoint order
- We have the matrix

$$F = \begin{bmatrix} 0.6, 1.3 & 0.5, 1.5 & 0.6, 1.5 \\ 0.4, 1.2 & 0 & 0 & 1 \\ 0.5, 1.2 & 1 & 1 & 0 \end{bmatrix}$$

• We obtain the matrices

$$F_{[0.6,1.3]} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \ F_{[0.5,1.5]} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \ F_{[0.6,1.5]} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix},$$

• Assignment: $[0.6, 1.3] \mapsto [0.5, 1.2]$, $[0.5, 1.5] \mapsto [0.5, 1.2]$ and $[0.6, 1.5] \mapsto [0.4, 1.2]$.

Endpoint order: $[a_1, b_1] \leq [a_2, b_2]$ iff $b_1 < b_2$ or $b_1 = b_2$ and $a_1 \leq a_2$

Example:

- Sort both $Rep B(S_2)$ and Rep B(T) by the endpoint order
- We have the matrix

$$F = \begin{bmatrix} 0.6, 1.3 & 0.5, 1.5 & 0.6, 1.5 \\ 0.4, 1.2 & 0 & 1 & 1 \\ 0.5, 1.2 & 1 & 1 & 0 \end{bmatrix}$$

• We obtain the matrices

$$F_{[0.6,1.3]} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, F_{[0.5,1.5]} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, F_{[0.6,1.5]} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

• Assignment: $[0.6, 1.3] \mapsto [0.5, 1.2]$ and $[0.5, 1.5] \mapsto [0.5, 1.2]$.

$$\begin{split} \mathcal{M}_{f}: S_{V} \times S_{U} \to \mathbb{Z}_{\geq 0} & \sum_{J \in S_{U}} \mathcal{M}_{f}(I, J) \leq m_{I} \\ \mathbb{M}_{f}(I, J) = \dim \lim_{t \in I \cap J} X_{IJt} \\ \end{split}$$
 Proof: Decorated points and persistence modules:
$$\begin{split} & \sum_{J \in S_{U}} \mathcal{M}_{f}(I, J) \leq m_{I} \\ \mathbb{M}_{f}(I, J) = \dim \lim_{t \in I \cap J} X_{IJt} \\ & \underset{t \in (\cdot, 4]}{\overset{\bullet}{\longrightarrow}} & \underset{$$

$$\mathcal{M}_f: S_V \times S_U \to \mathbb{Z}_{\geq 0} \qquad \sum_{J \in S_U} \mathcal{M}_f(I, J) \leq m_I$$
$$\mathcal{M}_f(I, J) = \dim \lim_{t \in I \cap J} X_{IJt}$$

Proof:

A section of a vector space, \mathcal{V} , is a pair of vector spaces, (F^-, F^+) , such that

$$F^- \hookrightarrow F^+ \hookrightarrow \mathcal{V}$$

We say that a set of sections, $\{(F_{\lambda}^{-}, F_{\lambda}^{+}) : \lambda \in \Lambda\}$, of \mathcal{V} is **disjoint** if, for all $\lambda \neq \mu$, $F_{\mu}^{+} \hookrightarrow F_{\lambda}^{-}$ or $F_{\lambda}^{+} \hookrightarrow F_{\mu}^{-}$

Lemma. If
$$\{(F_\lambda^-,F_\lambda^+):\lambda\in\Lambda\}$$
 is a set of disjoint sections of $\mathcal V$, we have that

$$\bigoplus_{\lambda \in \Lambda} \left(F_{\lambda}^{+} / F_{\lambda}^{-} \right) \hookrightarrow \mathcal{V}$$

$$\mathcal{M}_f: S_V \times S_U \to \mathbb{Z}_{\geq 0}$$
$$\mathcal{M}_f(I, J) = \dim \lim_{t \in I \cap J} X_{IJt}$$

$$\sum_{J \in S_U} \mathcal{M}_f(I, J) \le m_I$$

Proof:

dim $V^+_{(s,r) t}$ nº of intervals (a, b) such that $t \in (a, b)$,
 $a \le s$ and $b \le r$ dim $V^-_{(s,r) t}$ nº of intervals (a, b) such that $t \in (a, b)$,
(a < s and $b \le r)$ or $(a \le s$ and b < r)

 $\begin{array}{l} V^-_{(s,r)\ t} \ \text{and} \ V^+_{(s,r)\ t} \ \text{are persistence submodules of } V \ \text{and} \ \text{, for each} \ t \ \text{,} \\ \left\{ \left(V^-_{(s,r)\ t}, V^+_{(s,r)\ t} \right) \right\}_{s < r} \ \text{are disjoint sections of} \ V_t \end{array}$

$$\bigoplus_{s < r} \left(V^+_{(s,r),t} / V^-_{(s,r),t} \right) \hookrightarrow V_t$$

Proof:

$$\mathcal{M}_{f}: S_{V} \times S_{U} \to \mathbb{Z}_{\geq 0} \qquad \sum_{J \in S_{U}} \mathcal{M}_{f}(I, J) \leq m_{H}$$

$$\mathcal{M}_{f}(I, J) = \dim \lim_{t \in I \cap J} X_{IJt}$$

$$I = (a, b) \in S_{V} \qquad J = (c, d) \in S_{U}$$

$$A_{ct}^{d} := \frac{fV_{It}^{-} \cap U_{(c,d)t}^{+} + fV_{It}^{+} \cap U_{(c,d)t}^{-}}{fV_{It}^{-} \cap U_{(c,d)t}^{+}} \quad \text{and} \quad B_{ct}^{d} := \frac{fV_{It}^{+} \cap U_{(c,d)t}^{+}}{fV_{It}^{-} \cap U_{(c,d)t}^{+}}$$

$$\frac{B_{ct}^{d}}{A_{ct}^{d}} \simeq X_{IJt}$$

39

$$\mathcal{M}_f: S_V \times S_U \to \mathbb{Z}_{\geq 0} \qquad \sum_{J \in S_U} \mathcal{M}_f(I, J) \leq m_I$$
$$\mathcal{M}_f(I, J) = \dim \lim_{t \in I \cap J} X_{IJt}$$

Proof:

$$\tilde{A}_{c}^{d} := \varinjlim_{t \in I \cap J} A_{ct}^{d} \qquad \qquad \tilde{B}_{c}^{d} := \varinjlim_{t \in I \cap J} B_{ct}^{d}$$

- For fixed d and variable c, they are persistence modules indexed by ${f E}$
- They satisfies that

$$\frac{\tilde{B}_c^d}{\tilde{A}_c^d} \simeq \varinjlim_{t \in I \cap J} X_{IJt}$$

$$\mathcal{M}_f: S_V \times S_U \to \mathbb{Z}_{\geq 0} \qquad \sum_{J \in S_U} \mathcal{M}_f(I, J) \leq m_I$$
$$\mathcal{M}_f(I, J) = \dim \lim_{t \in I \cap J} X_{IJt}$$

Proof:

For each d,

 $\left\{ (\tilde{A}_{c}^{d}, \tilde{B}_{c}^{d}) : c \in \mathbf{E} \right\} \text{ is a disjoint set of sections of } \varinjlim_{c < d} \tilde{B}_{c}^{d}$ $\left(\bigoplus_{c < d} \varinjlim_{t \in I \cap J} X_{I(c,d)t} \right) \hookrightarrow \varinjlim_{c < d} \tilde{B}_{c}^{d} \hookrightarrow \varinjlim_{t \in (-\infty,d)} \left(fV_{It}^{+}/fV_{It}^{-} \right)$ $\underbrace{\tilde{B}_{c}^{d}}_{\tilde{A}_{c}^{d}}$

Links

https://doi.org/10.1016/j.comgeo.2023.101985

https://arxiv.org/abs/2306.02411

Decomposition of pointwise finite-dimensional persistence modules. W. Crawley-Boevey.

Topology Tools for Explainable and Green Artificial Intelligence

Rocio Gonzalez-Diaz rogodi@us.es

- Context: Green and Explainable artificial intelligence (REXASI-PRO)
- Computational topology tools: Persistent homology, barcodes, distance bottleneck, simplicial maps, Persistence modules, morphisms between persistence modules
- Partial matchings between barcodes
- Simplicial maps neural networks